Hindfoot Alignment in Flexible Cavovarus Deformity Under Orthostatic and Coleman Block Test Positions: A Weightbearing Computed Tomography Study.
Hindfoot Alignment in Flexible Cavovarus Deformity Under Orthostatic and Coleman Block Test Positions: A Weightbearing Computed Tomography Study.
- 2024
Available online from MWHC library: 1999 - present, Available in print through MWHC library: 1999 - 2006
BACKGROUND: Flexible cavovarus deformity is prevalent and the Coleman block test is frequently used to assess the first ray plantarflexion malpositioning in the overall deformity as well as the flexibility of the hindfoot. The objective was to assess and compare the weightbearing computed tomography (WBCT) 3-dimensional (3D) changes in clinical and bone alignment in flexible cavovarus deformity patients when performing the Coleman block test when compared to normal standing position and to controls. CONCLUSION: In this study, we observed improvement in the overall 3D WBCT alignment (FAO), axial plane adduction deformity (TNCA), as well as CT simulated clinical hindfoot alignment (WBCT-CHAA) in flexible cavovarus deformity patients when performing a Coleman block test. However, we did not find improvement in measures of coronal alignment of the hindfoot, indicating continued varus positioning of the hindfoot in these patients. LEVEL OF EVIDENCE: Level III, retrospective comparative study. METHODS: Twenty patients (40 feet) with flexible cavovarus deformity and 20 volunteer controls (40 feet) with normal foot alignment underwent WBCT imaging of the foot and ankle. Cavovarus patients were assessed in normal orthostatic and Coleman block test positions. Foot and ankle offset (FAO), hindfoot alignment angle (HAA), talocalcaneal angle (TCA), subtalar vertical angle (SVA) and talonavicular coverage angle (TNCA) and a CT-simulated soft tissue envelope image, WBCT clinical hindfoot alignment angle (WBCT-CHAA), were evaluated by 2 readers. Measurements were compared between cavovarus nonstressed and stressed positions and to controls. P values of .05 or less were considered significant. RESULTS: The intra- and interobserver intraclass correlation coefficient were good or excellent for all WBCT measurements. Cavovarus patients demonstrated significant correction of WBCT-CHAA (9.7 +/- 0.4 degrees), FAO (2.6 +/- 0.4%), and TNCA (8.8 +/- 1.8 degrees) when performing the Coleman block test (all P values <.0001). However, WBCT-CHAA and FAO measurements were still residually deformed and significantly different from controls (P values of .001 and <.0001, respectively). TNCA values corrected to values similar to healthy controls (P = .29). No differences were observed in cavovarus patients during Coleman block test for the coronal measures: HAA, TCA, and SVA measurements.
English
1071-1007
--Automated
IN PROCESS -- NOT YET INDEXED
MedStar Union Memorial Hospital
Foot and Ankle Surgery Fellowship
Journal Article
Available online from MWHC library: 1999 - present, Available in print through MWHC library: 1999 - 2006
BACKGROUND: Flexible cavovarus deformity is prevalent and the Coleman block test is frequently used to assess the first ray plantarflexion malpositioning in the overall deformity as well as the flexibility of the hindfoot. The objective was to assess and compare the weightbearing computed tomography (WBCT) 3-dimensional (3D) changes in clinical and bone alignment in flexible cavovarus deformity patients when performing the Coleman block test when compared to normal standing position and to controls. CONCLUSION: In this study, we observed improvement in the overall 3D WBCT alignment (FAO), axial plane adduction deformity (TNCA), as well as CT simulated clinical hindfoot alignment (WBCT-CHAA) in flexible cavovarus deformity patients when performing a Coleman block test. However, we did not find improvement in measures of coronal alignment of the hindfoot, indicating continued varus positioning of the hindfoot in these patients. LEVEL OF EVIDENCE: Level III, retrospective comparative study. METHODS: Twenty patients (40 feet) with flexible cavovarus deformity and 20 volunteer controls (40 feet) with normal foot alignment underwent WBCT imaging of the foot and ankle. Cavovarus patients were assessed in normal orthostatic and Coleman block test positions. Foot and ankle offset (FAO), hindfoot alignment angle (HAA), talocalcaneal angle (TCA), subtalar vertical angle (SVA) and talonavicular coverage angle (TNCA) and a CT-simulated soft tissue envelope image, WBCT clinical hindfoot alignment angle (WBCT-CHAA), were evaluated by 2 readers. Measurements were compared between cavovarus nonstressed and stressed positions and to controls. P values of .05 or less were considered significant. RESULTS: The intra- and interobserver intraclass correlation coefficient were good or excellent for all WBCT measurements. Cavovarus patients demonstrated significant correction of WBCT-CHAA (9.7 +/- 0.4 degrees), FAO (2.6 +/- 0.4%), and TNCA (8.8 +/- 1.8 degrees) when performing the Coleman block test (all P values <.0001). However, WBCT-CHAA and FAO measurements were still residually deformed and significantly different from controls (P values of .001 and <.0001, respectively). TNCA values corrected to values similar to healthy controls (P = .29). No differences were observed in cavovarus patients during Coleman block test for the coronal measures: HAA, TCA, and SVA measurements.
English
1071-1007
--Automated
IN PROCESS -- NOT YET INDEXED
MedStar Union Memorial Hospital
Foot and Ankle Surgery Fellowship
Journal Article