Dyspigmented hypertrophic scars: Beyond skin color.

MedStar author(s):
Citation: Pigment Cell & Melanoma Research. 2019 Mar 08PMID: 30849202Institution: MedStar Health Research Institute | MedStar Washington Hospital CenterDepartment: Firefighters' Burn and Surgical Research Laboratory | Surgery/Burn ServicesForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: IN PROCESS -- NOT YET INDEXEDYear: 2019ISSN:
  • 1755-1471
Name of journal: Pigment cell & melanoma researchAbstract: Although pigment synthesis is well understood, relevant mechanisms of psychologically debilitating dyspigmentation in nascent tissue after cutaneous injuries are still unknown. Here, differences in genomic transcription of hyper- and hypopigmented tissue relative to uninjured skin were investigated using a red Duroc swine scar model. Transcription profiles differed based on pigmentation phenotypes with a trend of more upregulation or downregulation in hyper- or hypopigmented scars, respectively. Ingenuity Pathway Analysis of significantly modulated genes in both pigmentation phenotypes showed pathways related to redox, metabolic, and inflammatory responses were more present in hypopigmented samples, while those related to stem cell development differentiation were found mainly in hyperpigmented samples. Cell-cell and cell-extracellular matrix interactions and inflammation responses were predicted (z-score) active in hyperpigmented and inactive in hypopigmented. The proinflammatory high-mobility group box 1 pathway showed the opposite trend. Analysis of differentially regulated mutually exclusive genes showed an extensive presence of metabolic, proinflammatory, and oxidative stress pathways in hypopigmented scars, while melanin synthesis, glycosaminoglycans biosynthesis, and cell differentiation pathways were predominant in hyperpigmented scar. Several potential therapeutic gene targets have been identified.Copyright (c) 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.All authors: Alkhalil A, Carney BC, Ghassemi P, Hammamieh R, Jett M, Miller SA, Moffatt LT, Muhie S, Ramella-Roman JC, Shupp JW, Travis TEFiscal year: FY2019Digital Object Identifier: ORCID: Date added to catalog: 2019-05-21
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 30849202 Available 30849202

Although pigment synthesis is well understood, relevant mechanisms of psychologically debilitating dyspigmentation in nascent tissue after cutaneous injuries are still unknown. Here, differences in genomic transcription of hyper- and hypopigmented tissue relative to uninjured skin were investigated using a red Duroc swine scar model. Transcription profiles differed based on pigmentation phenotypes with a trend of more upregulation or downregulation in hyper- or hypopigmented scars, respectively. Ingenuity Pathway Analysis of significantly modulated genes in both pigmentation phenotypes showed pathways related to redox, metabolic, and inflammatory responses were more present in hypopigmented samples, while those related to stem cell development differentiation were found mainly in hyperpigmented samples. Cell-cell and cell-extracellular matrix interactions and inflammation responses were predicted (z-score) active in hyperpigmented and inactive in hypopigmented. The proinflammatory high-mobility group box 1 pathway showed the opposite trend. Analysis of differentially regulated mutually exclusive genes showed an extensive presence of metabolic, proinflammatory, and oxidative stress pathways in hypopigmented scars, while melanin synthesis, glycosaminoglycans biosynthesis, and cell differentiation pathways were predominant in hyperpigmented scar. Several potential therapeutic gene targets have been identified.

Copyright (c) 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

English

Powered by Koha