Impact of unilateral and bilateral impairments on bimanual force production following stroke.

MedStar author(s):
Citation: Journal of Neurophysiology. 130(3):608-618, 2023 09 01.PMID: 37529847Institution: MedStar National Rehabilitation NetworkForm of publication: Journal ArticleMedline article type(s): Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.Subject headings: *Stroke | *Stroke Rehabilitation | Functional Laterality | Hand | Humans | Stroke Rehabilitation/mt [Methods] | Stroke/co [Complications] | Upper Extremity | Year: 2023ISSN:
  • 0022-3077
Name of journal: Journal of neurophysiologyAbstract: Large bilateral asymmetry and task deficits are typically observed during bimanual actions of stroke survivors. Do these abnormalities originate from unilateral impairments affecting their more-impaired limb, such as weakness and abnormal synergy, or from bilateral impairments such as incoordination of two limbs? To answer this question, 23 subjects including 10 chronic stroke survivors and 13 neurologically intact subjects participated in an experiment where they produced bimanual forces at different hand locations. The force magnitude and directional deviation of the more-impaired arm were measured for unilateral impairments and bimanual coordination across locations for bilateral impairments. Force asymmetry and task error were used to define task performance. Significant unilateral impairments were observed in subjects with stroke; the maximal force capacity of their more-impaired arm was significantly lower than that of their less-impaired arm, with a higher degree of force deviation. However, its force contribution during submaximal tasks was greater than its relative force capacity. Significant bilateral impairments were also observed, as stroke survivors modulated two forces to a larger degree across hand locations but in a less coordinated manner than control subjects did. But only unilateral, not bilateral, impairments explained a significant amount of between-subject variability in force asymmetry across subjects with stroke. Task error, in contrast, was correlated with neither unilateral nor bilateral impairments. Our results suggest that unilateral impairments of the more-impaired arm of stroke survivors mainly contribute to its reduced recruitment, but that the degree of its participation in bimanual task may be greater than their capacity as they attempt to achieve symmetry. NEW & NOTEWORTHY We studied how unilateral and bilateral impairments in stroke survivors affect their bimanual task performance. Unilateral impairments of the more-impaired limb, both weakness and loss of directional control, mainly contribute to bimanual asymmetry, but stroke survivors generally produce higher force with their more-impaired limb than their relative capacity. Bilateral force coordination was significantly impaired in stroke survivors, but its degree of impairment was not related to their unilateral impairments.All authors: Nguyen H, Phan T, Shadmehr R, Lee SWFiscal year: FY2024Digital Object Identifier: ORCID: Date added to catalog: 2023-11-22
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 37529847 Available 37529847

Large bilateral asymmetry and task deficits are typically observed during bimanual actions of stroke survivors. Do these abnormalities originate from unilateral impairments affecting their more-impaired limb, such as weakness and abnormal synergy, or from bilateral impairments such as incoordination of two limbs? To answer this question, 23 subjects including 10 chronic stroke survivors and 13 neurologically intact subjects participated in an experiment where they produced bimanual forces at different hand locations. The force magnitude and directional deviation of the more-impaired arm were measured for unilateral impairments and bimanual coordination across locations for bilateral impairments. Force asymmetry and task error were used to define task performance. Significant unilateral impairments were observed in subjects with stroke; the maximal force capacity of their more-impaired arm was significantly lower than that of their less-impaired arm, with a higher degree of force deviation. However, its force contribution during submaximal tasks was greater than its relative force capacity. Significant bilateral impairments were also observed, as stroke survivors modulated two forces to a larger degree across hand locations but in a less coordinated manner than control subjects did. But only unilateral, not bilateral, impairments explained a significant amount of between-subject variability in force asymmetry across subjects with stroke. Task error, in contrast, was correlated with neither unilateral nor bilateral impairments. Our results suggest that unilateral impairments of the more-impaired arm of stroke survivors mainly contribute to its reduced recruitment, but that the degree of its participation in bimanual task may be greater than their capacity as they attempt to achieve symmetry. NEW & NOTEWORTHY We studied how unilateral and bilateral impairments in stroke survivors affect their bimanual task performance. Unilateral impairments of the more-impaired limb, both weakness and loss of directional control, mainly contribute to bimanual asymmetry, but stroke survivors generally produce higher force with their more-impaired limb than their relative capacity. Bilateral force coordination was significantly impaired in stroke survivors, but its degree of impairment was not related to their unilateral impairments.

English

Powered by Koha