Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area .

MedStar author(s):
Citation: International Journal of Molecular Sciences. 24(23), 2023 Nov 23.PMID: 38068980Department: Internal Medicine Residency | MedStar Georgetown University Hospital/MedStar Washington Hospital CenterForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: *Fatty Liver | *Liver Neoplasms | *Metabolic Diseases | Black or African American/ge [Genetics] | Gene Expression Profiling | Humans | Pilot ProjectsYear: 2023ISSN:
  • 1422-0067
Name of journal: International journal of molecular sciencesAbstract: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming the most common chronic liver disease worldwide and is of concern among African Americans (AA) in the United States. This pilot study evaluated the differential gene expressions and identified the signature genes in the disease pathways of AA individuals with MASLD. Blood samples were obtained from MASLD patients (n = 23) and non-MASLD controls (n = 24) along with their sociodemographic and medical details. Whole-blood transcriptomic analysis was carried out using Affymetrix Clarion-S Assay. A validation study was performed utilizing TaqMan Arrays coupled with Ingenuity Pathway Analysis (IPA) to identify the major disease pathways. Out of 21,448 genes in total, 535 genes (2.5%) were significantly (p < 0.05) and differentially expressed when we compared the cases and controls. A significant overlap in the predominant differentially expressed genes and pathways identified in previous studies using hepatic tissue was observed. Of note, TGFB1 and E2F1 genes were upregulated, and HMBS was downregulated significantly. Hepatic fibrosis signaling is the top canonical pathway, and its corresponding biofunction contributes to the development of hepatocellular carcinoma. The findings address the knowledge gaps regarding how signature genes and functional pathways can be detected in blood samples ('liquid biopsy') in AA MASLD patients, demonstrating the potential of the blood samples as an alternative non-invasive source of material for future studies.All authors: Mondal T, Smith CI, Loffredo CA, Quartey R, Moses G, Howell CD, Korba B, Kwabi-Addo B, Nunlee-Bland G, Rucker L, Johnson J, Ghosh SFiscal year: FY2024Digital Object Identifier: Date added to catalog: 2024-01-16
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 38068980 Available 38068980

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming the most common chronic liver disease worldwide and is of concern among African Americans (AA) in the United States. This pilot study evaluated the differential gene expressions and identified the signature genes in the disease pathways of AA individuals with MASLD. Blood samples were obtained from MASLD patients (n = 23) and non-MASLD controls (n = 24) along with their sociodemographic and medical details. Whole-blood transcriptomic analysis was carried out using Affymetrix Clarion-S Assay. A validation study was performed utilizing TaqMan Arrays coupled with Ingenuity Pathway Analysis (IPA) to identify the major disease pathways. Out of 21,448 genes in total, 535 genes (2.5%) were significantly (p < 0.05) and differentially expressed when we compared the cases and controls. A significant overlap in the predominant differentially expressed genes and pathways identified in previous studies using hepatic tissue was observed. Of note, TGFB1 and E2F1 genes were upregulated, and HMBS was downregulated significantly. Hepatic fibrosis signaling is the top canonical pathway, and its corresponding biofunction contributes to the development of hepatocellular carcinoma. The findings address the knowledge gaps regarding how signature genes and functional pathways can be detected in blood samples ('liquid biopsy') in AA MASLD patients, demonstrating the potential of the blood samples as an alternative non-invasive source of material for future studies.

English

Powered by Koha