Effectiveness of a Glycylcycline Antibiotic for Reducing the Pathogenicity of Superantigen-Producing Methicillin-Resistant Staphylococcus aureus in Burn Wounds.

MedStar author(s):
Citation: Eplasty [Electronic Resource]. 17:e27, 2017PMID: 28943993Institution: MedStar Washington Hospital CenterDepartment: Surgery/Burn ServicesForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: PubMed-not-MEDLINE -- Not indexedYear: 2017ISSN:
  • 1937-5719
Name of journal: EplastyAbstract: <b>Objective</b>: Burn-injured patients are highly susceptible to infectious complications, which are often associated with increased morbidity and mortality. Rates of antibiotic resistance have increased, and resistant species such as methicillin-resistant Staphylococcus aureus provide additional challenges in the form of virulence factors. Proteins can disrupt local healing, leading to systemic immune disruption. To optimize outcomes, treatments that reduce pathogenicity must be identified. This study aims to compare a glycylcycline antibiotic-tigecycline-with clindamycin for effectiveness in treating superantigenic methicillin-resistant Staphylococcus aureus in burn wounds. <b>Methods</b>: Sprague-Dawley rats received paired 2 x 2-cm burn wounds, which were subsequently inoculated with known virulence factor-producing methicillin-resistant Staphylococcus aureus or media alone on postinjury day 1. Infected animals received twice-daily tigecycline (high or low dose), twice-daily clindamycin (high or low dose), or saline alone (positive controls). Daily sampling and imaging assessments were performed. <b>Results</b>: Bacterial counts and toxin levels were reduced significantly in antibiotic-treated groups relative to positive controls (P < .001). Results from day 7 showed measurable toxin levels in clindamycin-treated, but not tigecycline-treated, wounds. Imaging analysis revealed a return of wound perfusion in tigecycline-treated animals similar to the sham animals. Transcript analysis using polymerase chain reaction and polymerase chain reaction arrays demonstrated downregulation of gene expression in antibiotic-treated animals as compared with positive controls. <b>Conclusions</b>: Overall, this study supports the use of tigecycline in the treatment of methicillin-resistant Staphylococcus aureus-infected burn wounds. While both protein synthesis inhibitors are effective, tigecycline appears to be superior in controlling toxin levels, enabling better wound healing.All authors: Carney BC, Jo DY, Moffatt LT, Nosanov LB, Ortiz RT, Randad PR, Shupp JWFiscal year: FY2018Date added to catalog: 2017-09-29
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 28943993 Available 28943993

<b>Objective</b>: Burn-injured patients are highly susceptible to infectious complications, which are often associated with increased morbidity and mortality. Rates of antibiotic resistance have increased, and resistant species such as methicillin-resistant Staphylococcus aureus provide additional challenges in the form of virulence factors. Proteins can disrupt local healing, leading to systemic immune disruption. To optimize outcomes, treatments that reduce pathogenicity must be identified. This study aims to compare a glycylcycline antibiotic-tigecycline-with clindamycin for effectiveness in treating superantigenic methicillin-resistant Staphylococcus aureus in burn wounds. <b>Methods</b>: Sprague-Dawley rats received paired 2 x 2-cm burn wounds, which were subsequently inoculated with known virulence factor-producing methicillin-resistant Staphylococcus aureus or media alone on postinjury day 1. Infected animals received twice-daily tigecycline (high or low dose), twice-daily clindamycin (high or low dose), or saline alone (positive controls). Daily sampling and imaging assessments were performed. <b>Results</b>: Bacterial counts and toxin levels were reduced significantly in antibiotic-treated groups relative to positive controls (P < .001). Results from day 7 showed measurable toxin levels in clindamycin-treated, but not tigecycline-treated, wounds. Imaging analysis revealed a return of wound perfusion in tigecycline-treated animals similar to the sham animals. Transcript analysis using polymerase chain reaction and polymerase chain reaction arrays demonstrated downregulation of gene expression in antibiotic-treated animals as compared with positive controls. <b>Conclusions</b>: Overall, this study supports the use of tigecycline in the treatment of methicillin-resistant Staphylococcus aureus-infected burn wounds. While both protein synthesis inhibitors are effective, tigecycline appears to be superior in controlling toxin levels, enabling better wound healing.

English

Powered by Koha