Meta-analytic connectivity modeling of the human superior temporal sulcus.

MedStar author(s):
Citation: Brain Structure & Function. 222(1):267-285, 2017 JanPMID: 27003288Institution: MedStar National Rehabilitation NetworkForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: *Brain Mapping/mt [Methods] | *Models, Neurological | *Temporal Lobe/ph [Physiology] | Brain/ph [Physiology] | Cognition/ph [Physiology] | Emotions/ph [Physiology] | Female | Functional Laterality | Humans | Male | Neural Pathways/ph [Physiology] | Perception/ph [Physiology]Year: 2017ISSN:
  • 1863-2653
Name of journal: Brain structure & functionAbstract: The superior temporal sulcus (STS) is a critical region for multiple neural processes in the human brain Hein and Knight (J Cogn Neurosci 20(12): 2125-2136, 2008). To better understand the multiple functions of the STS it would be useful to know more about its consistent functional coactivations with other brain regions. We used the meta-analytic connectivity modeling technique to determine consistent functional coactivation patterns across experiments and behaviors associated with bilateral anterior, middle, and posterior anatomical STS subregions. Based on prevailing models for the cortical organization of audition and language, we broadly hypothesized that across various behaviors the posterior STS (pSTS) would coactivate with dorsal-stream regions, whereas the anterior STS (aSTS) would coactivate with ventral-stream regions. The results revealed distinct coactivation patterns for each STS subregion, with some overlap in the frontal and temporal areas, and generally similar coactivation patterns for the left and right STS. Quantitative comparison of STS subregion coactivation maps demonstrated that the pSTS coactivated more strongly than other STS subregions in the same hemisphere with dorsal-stream regions, such as the inferior parietal lobule (only left pSTS), homotopic pSTS, precentral gyrus and supplementary motor area. In contrast, the aSTS showed more coactivation with some ventral-stream regions, such as the homotopic anterior temporal cortex and left inferior frontal gyrus, pars orbitalis (only right aSTS). These findings demonstrate consistent coactivation maps across experiments and behaviors for different anatomical STS subregions, which may help future studies consider various STS functions in the broader context of generalized coactivations for individuals with and without neurological disorders.All authors: Erickson LC, Rauschecker JP, Turkeltaub PEFiscal year: FY2017Digital Object Identifier: Date added to catalog: 2017-05-06
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 27003288 Available 27003288

The superior temporal sulcus (STS) is a critical region for multiple neural processes in the human brain Hein and Knight (J Cogn Neurosci 20(12): 2125-2136, 2008). To better understand the multiple functions of the STS it would be useful to know more about its consistent functional coactivations with other brain regions. We used the meta-analytic connectivity modeling technique to determine consistent functional coactivation patterns across experiments and behaviors associated with bilateral anterior, middle, and posterior anatomical STS subregions. Based on prevailing models for the cortical organization of audition and language, we broadly hypothesized that across various behaviors the posterior STS (pSTS) would coactivate with dorsal-stream regions, whereas the anterior STS (aSTS) would coactivate with ventral-stream regions. The results revealed distinct coactivation patterns for each STS subregion, with some overlap in the frontal and temporal areas, and generally similar coactivation patterns for the left and right STS. Quantitative comparison of STS subregion coactivation maps demonstrated that the pSTS coactivated more strongly than other STS subregions in the same hemisphere with dorsal-stream regions, such as the inferior parietal lobule (only left pSTS), homotopic pSTS, precentral gyrus and supplementary motor area. In contrast, the aSTS showed more coactivation with some ventral-stream regions, such as the homotopic anterior temporal cortex and left inferior frontal gyrus, pars orbitalis (only right aSTS). These findings demonstrate consistent coactivation maps across experiments and behaviors for different anatomical STS subregions, which may help future studies consider various STS functions in the broader context of generalized coactivations for individuals with and without neurological disorders.

English

Powered by Koha