Modulation of finger muscle activation patterns across postures is coordinated across all muscle groups.

MedStar author(s):
Citation: Journal of Neurophysiology. 124(2):330-341, 2020 08 01.PMID: 32579416Institution: MedStar National Rehabilitation NetworkForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: *Fingers/ph [Physiology] | *Motor Activity/ph [Physiology] | *Muscle, Skeletal/ph [Physiology] | *Posture/ph [Physiology] | Adult | Biomechanical Phenomena/ph [Physiology] | Electromyography | Female | Humans | Male | Young AdultYear: 2020Local holdings: Available online from MWHC library: 1997 - present (after 1 year)ISSN:
  • 0022-3077
Name of journal: Journal of neurophysiologyAbstract: Successful grasp requires that grip forces be properly directed between the fingertips and the held object. Changes in digit posture significantly affect the mapping between muscle force and fingertip force. Joint torques must subsequently be altered to maintain the desired force direction at the fingertips. Our current understanding of the roles of hand muscles in force production remains incomplete, as past studies focused on a limited set of postures or force directions. To thoroughly examine how hand muscles adapt to changing external (force direction) and internal (posture) conditions, activation patterns of six index finger muscles were examined with intramuscular electrodes in 10 healthy subjects. Participants produced submaximal isometric forces in each of six orthogonal directions at nine different finger postures. Across force directions, participants significantly altered activation patterns to accommodate postural changes in the interphalangeal joint angles but not changes in the metacarpophalangeal joint angles. Modulation of activation levels of the extrinsic hand muscles, particularly the extensors, were as great as those of intrinsic muscles, suggesting that both extrinsic and intrinsic muscles were involved in creating the desired forces. Despite considerable between-subject variation in the absolute activation patterns, principal component analysis revealed that participants used similar strategies to accommodate the postural changes. The changes in muscle coordination also helped increase joint impedance in order to stabilize the end-point force direction. This effect counteracts the increased signal-dependent motor noise that arises with greater magnitude of muscle activation as interphalangeal joint flexion is increased. These results highlight the role of the extrinsic muscles in controlling fingertip force direction across finger postures. NEW & NOTEWORTHY We examined how hand muscles adapt to changing external (force direction) and internal (posture) conditions. Muscle activations, particularly of the extrinsic extensors, were significantly affected by postural changes of the interphalangeal, but not metacarpophalangeal, joints. Joint impedance was modulated so that the effects of the signal-dependent motor noise on the force output were reduced. Comparisons with theoretical solutions showed that the chosen activation patterns occupied a small portion of the possible solution space, minimizing the maximum activation of any one muscle.All authors: Conrad MO, Fischer HC, Kamper DG, Lee SW, Qiu DOriginally published: Journal of Neurophysiology. 124(2):330-341, 2020 Aug 01.Fiscal year: FY2021Digital Object Identifier: Date added to catalog: 2020-10-06
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 32579416 Available 32579416

Available online from MWHC library: 1997 - present (after 1 year)

Successful grasp requires that grip forces be properly directed between the fingertips and the held object. Changes in digit posture significantly affect the mapping between muscle force and fingertip force. Joint torques must subsequently be altered to maintain the desired force direction at the fingertips. Our current understanding of the roles of hand muscles in force production remains incomplete, as past studies focused on a limited set of postures or force directions. To thoroughly examine how hand muscles adapt to changing external (force direction) and internal (posture) conditions, activation patterns of six index finger muscles were examined with intramuscular electrodes in 10 healthy subjects. Participants produced submaximal isometric forces in each of six orthogonal directions at nine different finger postures. Across force directions, participants significantly altered activation patterns to accommodate postural changes in the interphalangeal joint angles but not changes in the metacarpophalangeal joint angles. Modulation of activation levels of the extrinsic hand muscles, particularly the extensors, were as great as those of intrinsic muscles, suggesting that both extrinsic and intrinsic muscles were involved in creating the desired forces. Despite considerable between-subject variation in the absolute activation patterns, principal component analysis revealed that participants used similar strategies to accommodate the postural changes. The changes in muscle coordination also helped increase joint impedance in order to stabilize the end-point force direction. This effect counteracts the increased signal-dependent motor noise that arises with greater magnitude of muscle activation as interphalangeal joint flexion is increased. These results highlight the role of the extrinsic muscles in controlling fingertip force direction across finger postures. NEW & NOTEWORTHY We examined how hand muscles adapt to changing external (force direction) and internal (posture) conditions. Muscle activations, particularly of the extrinsic extensors, were significantly affected by postural changes of the interphalangeal, but not metacarpophalangeal, joints. Joint impedance was modulated so that the effects of the signal-dependent motor noise on the force output were reduced. Comparisons with theoretical solutions showed that the chosen activation patterns occupied a small portion of the possible solution space, minimizing the maximum activation of any one muscle.

English

Powered by Koha