Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning.

MedStar author(s):
Citation: Journal of Stroke & Cerebrovascular Diseases. 26(12):2880-2887, 2017 Dec.PMID: 28781056Institution: MedStar National Rehabilitation NetworkForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: *Actigraphy/is [Instrumentation] | *Activities of Daily Living | *Fitness Trackers | *Machine Learning | *Movement | *Signal Processing, Computer-Assisted | *Stroke/di [Diagnosis] | *Upper Extremity/ir [Innervation] | Acceleration | Adult | Aged | Biomechanical Phenomena | Case-Control Studies | Equipment Design | Feasibility Studies | Female | Health Status | Humans | Male | Middle Aged | Predictive Value of Tests | Reproducibility of Results | Stroke/pp [Physiopathology] | Time Factors | Video RecordingYear: 2017ISSN:
  • 1052-3057
Name of journal: Journal of stroke and cerebrovascular diseases : the official journal of National Stroke AssociationAbstract: BACKGROUND AND PURPOSE: Trials of restorative therapies after stroke and clinical rehabilitation require relevant and objective efficacy end points; real-world upper extremity (UE) functional use is an attractive candidate. We present a novel, inexpensive, and feasible method for separating UE functional use from nonfunctional movement after stroke using a single wrist-worn accelerometer.CONCLUSIONS: Our method shows promise for inexpensive and objective quantification of functional UE use in hemiparesis, and for assessing the impact of UE treatments. Training a classifier on raw sensor data is feasible, and determination of whether patients functionally use their UE can thus be done remotely. For the restorative treatment trial setting, an intrasubject test/train approach would be especially accurate. This method presents a potentially precise, cost-effective, and objective measurement of UE use outside the clinical or laboratory environment. Copyright (c) 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.METHODS: Ten controls and 10 individuals with stroke performed a series of minimally structured activities while simultaneously being videotaped and wearing a sensor on each wrist that captured the linear acceleration and angular velocity of their UEs. Video data provided ground truth to annotate sensor data as functional or nonfunctional limb use. Using the annotated sensor data, we trained a machine learning tool, a Random Forest model. We then assessed the accuracy of that classification.RESULTS: In intrasubject test trials, our method correctly classified sensor data with an average of 94.80% in controls and 88.38% in stroke subjects. In leave-one-out intersubject testing and training, correct classification averaged 91.53% for controls and 70.18% in stroke subjects.All authors: Barth J, Bochniewicz EM, Dromerick AW, Emmer G, Lum P, McLeod AOriginally published: Journal of Stroke & Cerebrovascular Diseases. , 2017 Aug 04Fiscal year: FY2018Digital Object Identifier: Date added to catalog: 2017-08-23
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 28781056 Available 28781056

BACKGROUND AND PURPOSE: Trials of restorative therapies after stroke and clinical rehabilitation require relevant and objective efficacy end points; real-world upper extremity (UE) functional use is an attractive candidate. We present a novel, inexpensive, and feasible method for separating UE functional use from nonfunctional movement after stroke using a single wrist-worn accelerometer.

CONCLUSIONS: Our method shows promise for inexpensive and objective quantification of functional UE use in hemiparesis, and for assessing the impact of UE treatments. Training a classifier on raw sensor data is feasible, and determination of whether patients functionally use their UE can thus be done remotely. For the restorative treatment trial setting, an intrasubject test/train approach would be especially accurate. This method presents a potentially precise, cost-effective, and objective measurement of UE use outside the clinical or laboratory environment. Copyright (c) 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

METHODS: Ten controls and 10 individuals with stroke performed a series of minimally structured activities while simultaneously being videotaped and wearing a sensor on each wrist that captured the linear acceleration and angular velocity of their UEs. Video data provided ground truth to annotate sensor data as functional or nonfunctional limb use. Using the annotated sensor data, we trained a machine learning tool, a Random Forest model. We then assessed the accuracy of that classification.

RESULTS: In intrasubject test trials, our method correctly classified sensor data with an average of 94.80% in controls and 88.38% in stroke subjects. In leave-one-out intersubject testing and training, correct classification averaged 91.53% for controls and 70.18% in stroke subjects.

English

Powered by Koha