000 | 04057nam a22004937a 4500 | ||
---|---|---|---|
008 | 240807s20242024 xxu||||| |||| 00| 0 eng d | ||
022 | _a1472-6947 | ||
024 | _a10.1186/s12911-024-02566-4 [pii] | ||
024 | _aPMC11170878 [pmc] | ||
040 | _aOvid MEDLINE(R) | ||
099 | _a38872146 | ||
245 | _aSurprising and novel multivariate sequential patterns using odds ratio for temporal evolution in healthcare. | ||
251 | _aBMC Medical Informatics & Decision Making. 24(1):165, 2024 Jun 13. | ||
252 | _aBMC Med Inf Decis Mak. 24(1):165, 2024 Jun 13. | ||
253 | _aBMC medical informatics and decision making | ||
260 | _c2024 | ||
260 | _fFY2024 | ||
260 | _p2024 Jun 13 | ||
265 | _sepublish | ||
265 | _tMEDLINE | ||
266 | _d2024-08-07 | ||
266 | _z2024/06/13 23:35 | ||
501 | _aAvailable online from MWHC library: 2001 - present | ||
520 | _aBACKGROUND: Pattern mining techniques are helpful tools when extracting new knowledge in real practice, but the overwhelming number of patterns is still a limiting factor in the health-care domain. Current efforts concerning the definition of measures of interest for patterns are focused on reducing the number of patterns and quantifying their relevance (utility/usefulness). However, although the temporal dimension plays a key role in medical records, few efforts have been made to extract temporal knowledge about the patient's evolution from multivariate sequential patterns. | ||
520 | _aCONCLUSIONS: Our proposed method with which to extract JDORSP generates a set of interpretable multivariate sequential patterns with new knowledge regarding the temporal evolution of the patients. The number of patterns is greatly reduced when compared to those generated by other methods and measures of interest. An additional advantage of this method is that it does not require any parameters or thresholds, and that the reduced number of patterns allows a manual evaluation. Copyright © 2024. The Author(s). | ||
520 | _aMETHODS: In this paper, we propose a method to extract a new type of patterns in the clinical domain called Jumping Diagnostic Odds Ratio Sequential Patterns (JDORSP). The aim of this method is to employ the odds ratio to identify a concise set of sequential patterns that represent a patient's state with a statistically significant protection factor (i.e., a pattern associated with patients that survive) and those extensions whose evolution suddenly changes the patient's clinical state, thus making the sequential patterns a statistically significant risk factor (i.e., a pattern associated with patients that do not survive), or vice versa. | ||
520 | _aRESULTS: The results of our experiments highlight that our method reduces the number of sequential patterns obtained with state-of-the-art pattern reduction methods by over 95%. Only by achieving this drastic reduction can medical experts carry out a comprehensive clinical evaluation of the patterns that might be considered medical knowledge regarding the temporal evolution of the patients. We have evaluated the surprisingness and relevance of the sequential patterns with clinicians, and the most interesting fact is the high surprisingness of the extensions of the patterns that become a protection factor, that is, the patients that recover after several days of being at high risk of dying. | ||
546 | _aEnglish | ||
650 | _a*Data Mining | ||
650 | _aData Mining/mt [Methods] | ||
650 | _aDelivery of Health Care | ||
650 | _aElectronic Health Records | ||
650 | _aHumans | ||
650 | _aOdds Ratio | ||
650 | _aPattern Recognition, Automated | ||
650 | _aTime Factors | ||
650 | _zAutomated | ||
651 | _aMedStar Heart & Vascular Institute | ||
657 | _aJournal Article | ||
700 |
_aLorente-Ros, Marta _bMHVI |
||
790 | _aCasanova IJ, Campos M, Juarez JM, Gomariz A, Canovas-Segura B, Lorente-Ros M, Lorente JA | ||
856 |
_uhttps://dx.doi.org/10.1186/s12911-024-02566-4 _zhttps://dx.doi.org/10.1186/s12911-024-02566-4 |
||
942 |
_cART _dArticle |
||
999 |
_c14586 _d14586 |