Pediatric sepsis phenotypes for enhanced therapeutics: An application of clustering to electronic health records.

MedStar author(s):
Citation: Journal of the American College of Emergency Physicians open. 3(1):e12660, 2022 Feb.PMID: 35112102Institution: MedStar Health Research InstituteForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: IN PROCESS -- NOT YET INDEXEDYear: 2022Name of journal: Journal of the American College of Emergency Physicians openAbstract: Conclusion: Compared to K-means, which is commonly used in clustering studies, LCA appears to be a more robust, clinically useful statistical tool in analyzing a heterogeneous pediatric sepsis cohort toward informing targeted therapies. Additional prospective studies are needed to validate clinical utility of predictive models that target derived pediatric sepsis phenotypes in emergency department settings. Copyright (c) 2022 The Authors. JACEP Open published by Wiley Periodicals LLC on behalf of American College of Emergency Physicians.Methods: Data were extracted from anonymized medical records of 6446 pediatric patients that presented to 1 of 6 emergency departments (EDs) between 2013 and 2018 and were thereafter admitted. Using International Classification of Diseases (ICD)-9 and ICD-10 discharge codes, 151 patients were identified with a sepsis continuum diagnosis that included septicemia, sepsis, severe sepsis, and septic shock. Using feature sets used in related clustering studies, LCA and K-means algorithms were used to derive 4 distinct phenotypic pediatric sepsis segmentations. Each segmentation was evaluated for phenotypic homogeneity, separation, and clinical use.Objective: The heterogeneity of pediatric sepsis patients suggests the potential benefits of clustering analytics to derive phenotypes with distinct host response patterns that may help guide personalized therapeutics. We evaluate the relative performance of latent class analysis (LCA) and K-means, 2 commonly used clustering methods toward the derivation of clinically useful pediatric sepsis phenotypes.Results: Using the 2 feature sets, LCA clustering resulted in 2 similar segmentations of 4 clinically distinct phenotypes, while K-means clustering resulted in segmentations of 3 and 4 phenotypes. All 4 segmentations identified at least 1 high severity phenotype, but LCA-identified phenotypes reflected superior stratification, high entropy approaching 1 (eg, 0.994) indicating excellent separation between estimated phenotypes, and differential treatment/treatment response, and outcomes that were non-randomly distributed across phenotypes (P < 0.001).All authors: Chamberlain JM, Freishtat RJ, Galarraga JE, Koutroulis I, Morales JA, Velez T, Wang T, Yohannes SFiscal year: FY2022Digital Object Identifier: ORCID: Date added to catalog: 2022-02-22
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 35112102 Available 35112102

Conclusion: Compared to K-means, which is commonly used in clustering studies, LCA appears to be a more robust, clinically useful statistical tool in analyzing a heterogeneous pediatric sepsis cohort toward informing targeted therapies. Additional prospective studies are needed to validate clinical utility of predictive models that target derived pediatric sepsis phenotypes in emergency department settings. Copyright (c) 2022 The Authors. JACEP Open published by Wiley Periodicals LLC on behalf of American College of Emergency Physicians.

Methods: Data were extracted from anonymized medical records of 6446 pediatric patients that presented to 1 of 6 emergency departments (EDs) between 2013 and 2018 and were thereafter admitted. Using International Classification of Diseases (ICD)-9 and ICD-10 discharge codes, 151 patients were identified with a sepsis continuum diagnosis that included septicemia, sepsis, severe sepsis, and septic shock. Using feature sets used in related clustering studies, LCA and K-means algorithms were used to derive 4 distinct phenotypic pediatric sepsis segmentations. Each segmentation was evaluated for phenotypic homogeneity, separation, and clinical use.

Objective: The heterogeneity of pediatric sepsis patients suggests the potential benefits of clustering analytics to derive phenotypes with distinct host response patterns that may help guide personalized therapeutics. We evaluate the relative performance of latent class analysis (LCA) and K-means, 2 commonly used clustering methods toward the derivation of clinically useful pediatric sepsis phenotypes.

Results: Using the 2 feature sets, LCA clustering resulted in 2 similar segmentations of 4 clinically distinct phenotypes, while K-means clustering resulted in segmentations of 3 and 4 phenotypes. All 4 segmentations identified at least 1 high severity phenotype, but LCA-identified phenotypes reflected superior stratification, high entropy approaching 1 (eg, 0.994) indicating excellent separation between estimated phenotypes, and differential treatment/treatment response, and outcomes that were non-randomly distributed across phenotypes (P < 0.001).

English

Powered by Koha