Clinical and Molecular Analysis in 2 Families With Novel Compound Heterozygous SBP2 (SECISBP2) Mutations.

MedStar author(s):
Citation: Journal of Clinical Endocrinology & Metabolism. 105(3), 2020 03 01.PMID: 32084277Institution: MedStar Washington Hospital CenterDepartment: Medicine/EndocrinologyForm of publication: Journal ArticleMedline article type(s): Journal ArticleSubject headings: *RNA-Binding Proteins/ge [Genetics] | *Selenoproteins/df [Deficiency] | *Thyroid Diseases/ge [Genetics] | Adolescent | Adult | Child | Child, Preschool | Female | Heterozygote | Humans | Male | Mutation | Pedigree | Thyroid Function Tests | Thyroid Hormones/bl [Blood] | Young AdultYear: 2020ISSN:
  • 0021-972X
Name of journal: The Journal of clinical endocrinology and metabolismAbstract: CASE DESCRIPTIONS: Probands 1 and 2 presented with growth and developmental delay. Both had characteristic TFT with high T4, low T3, high reverse T3, and normal or slightly elevated TSH. The coding region of the SBP2 gene was sequenced and analysis of in vitro translated wild-type and mutant SBP2 proteins was performed. Sequencing of the SBP2 gene identified novel compound heterozygous mutations resulting in mutant SBP2 proteins E679D and R197* in proband 1, and K682Tfs*2 and Q782* in proband 2. In vitro translation of the missense E679D demonstrated all four isoforms, whereas R197* had only 2 shorter isoforms translated from downstream ATGs, and Q782*, K682Tfs*2 expressed isoforms with truncated C-terminus. Reduction in serum glutathione peroxidase enzymatic activity was also demonstrated in both probands.CONCLUSIONS: We report 2 additional families with mutations in the SBP2 gene, a rare inherited condition manifesting global selenoprotein deficiencies. Report of additional families with SBP2 deficiency and their evaluation over time is needed to determine the full spectrum of clinical manifestations in SBP2 deficiency and increase our understanding of the role played by SBP2 and selenoproteins in health and disease. Copyright Published by Oxford University Press on behalf of the Endocrine Society 2020.CONTEXT: Selenocysteine insertion sequence binding protein 2 (SECISBP2, SBP2) is an essential factor for selenoprotein synthesis. Individuals with SBP2 defects have characteristic thyroid function test (TFT) abnormalities resulting from deficiencies in the selenoenzymes deiodinases. Eight families with recessive SBP2 gene mutations have been reported to date. We report 2 families with inherited defect in thyroid hormone metabolism caused by 4 novel compound heterozygous mutations in the SBP2 gene.All authors: Alikasifoglu A, Burman KD, Dumitrescu AM, Fu J, Gonc EN, Kandemir N, Korwutthikulrangsri M, Liao XH, Menucci MB, Sillers L, Weiss REOriginally published: Journal of Clinical Endocrinology & Metabolism. 105(3), 2020 Mar 01.Fiscal year: FY2020Digital Object Identifier: Date added to catalog: 2020-02-26
Holdings
Item type Current library Collection Call number Status Date due Barcode
Journal Article MedStar Authors Catalog Article 32084277 Available 32084277

CASE DESCRIPTIONS: Probands 1 and 2 presented with growth and developmental delay. Both had characteristic TFT with high T4, low T3, high reverse T3, and normal or slightly elevated TSH. The coding region of the SBP2 gene was sequenced and analysis of in vitro translated wild-type and mutant SBP2 proteins was performed. Sequencing of the SBP2 gene identified novel compound heterozygous mutations resulting in mutant SBP2 proteins E679D and R197* in proband 1, and K682Tfs*2 and Q782* in proband 2. In vitro translation of the missense E679D demonstrated all four isoforms, whereas R197* had only 2 shorter isoforms translated from downstream ATGs, and Q782*, K682Tfs*2 expressed isoforms with truncated C-terminus. Reduction in serum glutathione peroxidase enzymatic activity was also demonstrated in both probands.

CONCLUSIONS: We report 2 additional families with mutations in the SBP2 gene, a rare inherited condition manifesting global selenoprotein deficiencies. Report of additional families with SBP2 deficiency and their evaluation over time is needed to determine the full spectrum of clinical manifestations in SBP2 deficiency and increase our understanding of the role played by SBP2 and selenoproteins in health and disease. Copyright Published by Oxford University Press on behalf of the Endocrine Society 2020.

CONTEXT: Selenocysteine insertion sequence binding protein 2 (SECISBP2, SBP2) is an essential factor for selenoprotein synthesis. Individuals with SBP2 defects have characteristic thyroid function test (TFT) abnormalities resulting from deficiencies in the selenoenzymes deiodinases. Eight families with recessive SBP2 gene mutations have been reported to date. We report 2 families with inherited defect in thyroid hormone metabolism caused by 4 novel compound heterozygous mutations in the SBP2 gene.

English

Powered by Koha